Model selection with the Loss Rank Principle

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model Selection with the Loss Rank Principle

A key issue in statistics and machine learning is to automatically select the “right” model complexity, e.g., the number of neighbors to be averaged over in k nearest neighbor (kNN) regression or the polynomial degree in regression with polynomials. We suggest a novel principle the Loss Rank Principle (LoRP) for model selection in regression and classification. It is based on the loss rank, whi...

متن کامل

The Loss Rank Principle for Model Selection

We introduce a new principle for model selection in regression and classification. Many regression models are controlled by some smoothness or flexibility or complexity parameter c, e.g. the number of neighbors to be averaged over in k nearest neighbor (kNN) regression or the polynomial degree in regression with polynomials. Let f̂ c D be the (best) regressor of complexity c on data D. A more fl...

متن کامل

Model Selection by Loss Rank for Classification and Unsupervised Learning

Hutter (2007) recently introduced the loss rank principle (LoRP) as a generalpurpose principle for model selection. The LoRP enjoys many attractive properties and deserves further investigations. The LoRP has been well-studied for regression framework in Hutter and Tran (2010). In this paper, we study the LoRP for classification framework, and develop it further for model selection problems in ...

متن کامل

The Minimum Description Length Principle and Model Selection in Spectropolarimetry

It is shown that the two-part Minimum Description Length Principle can be used to discriminate among different models that can explain a given observed dataset. The description length is chosen to be the sum of the lengths of the message needed to encode the model plus the message needed to encode the data when the model is applied to the dataset. It is verified that the proposed principle can ...

متن کامل

Model Selection using Information Theory and the MDL Principle ∗

Information theory offers a coherent, intuitive view of model selection. This perspective arises from thinking of a statistical model as a code, an algorithm for compressing data into a sequence of bits. The description length is the length of this code for the data plus the length of a description of the model itself. The length of the code for the data measures the fit of the model to the dat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Statistics & Data Analysis

سال: 2010

ISSN: 0167-9473

DOI: 10.1016/j.csda.2009.11.015